

Mr. Kevin Adler, RPM
U.S. Environmental Protection Agency
Region V
Mail Code SR-J6
77 West Jackson Boulevard
Chicago, Illinois 60604-3590

Re: 2006 Residential Well Re-Sampling Results

American Chemical Service NPL Site, Griffith, Indiana

Dear Kevin:

In September 2006, MWH collected samples from five residential wells. The samples were submitted to Compuchem Laboratories of Cary, North Carolina, for analyses. Upon receipt, the data package was forwarded to Laboratory Data Consultants (LDC) of Carlsbad, California, for data validation. The validated laboratory package for these samples was previously provided to the U.S. EPA under separate cover.

The original September sample results reported detections of the volatile organic compounds (VOC) methylene chloride and/or toluene in groundwater samples from all five residential wells. These compounds were determined to be non-detected in the groundwater by LDC because they were also detected in laboratory blank samples. However, acetone and one polychlorinated biphenyl (PCB) compound, Aroclor-1260, were also detected in samples collected from residential well PW-B.

As a precaution, a second set of groundwater samples was collected from PW-B on October 19, 2006. The residential well PW-B is located at 1009 Reder Road. These samples were analyzed for the VOC and chlorinated pesticide/PCB suite of chemicals. No VOCs or pesticide/PCBs were detected in the re-sampled groundwater from PW-B.

Therefore, the detections reported in the September sampling event do not appear to be representative of actual groundwater conditions, as the re-sampling results show these compounds were not present in the October samples. Copies of the validated laboratory package for the October groundwater samples are provided as an attachment to this letter.

Sincerely,

MWH Americas, Inc.

Peter J. Vagt, Ph.D., CPG

Vice President

Attachments: 2006 Validated Residential Well PW-B Analytical Results (Sample Data Group 11287)

Cover letter only is being carbon copied to the following recipients. The data packets will be provided as part of the 3rd Quarter Groundwater Monitoring Report at a future date.

cc: P. Kasarabada, IDEM Barbara Magel, KW&M, Ltd.

JEF/dpp/pjv/elm
J:\405\0577 ACS\0301 GW Mon\September 2006\Residential Re-Sampling Results 2006 EPA_letter.doc 4050577.03010202

ACS Residential Data Validation Reports LDC# 15715

Volatiles

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

ACS Residential

Collection Date:

October 19, 2006

LDC Report Date:

November 13, 2006

Matrix:

Water

Parameters:

Volatiles

Validation Level:

EPA Level III & IV

Laboratory:

CompuChem

Sample Delivery Group (SDG): 11287

Sample Identification

ACSGWPWBRE28**

TRIP BLANK

^{**}Indicates sample underwent EPA Level IV review

Introduction

This data review covers 2 water samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Contract Laboratory Program Statement of Work (SOW) OLC03.2 for Volatiles.

The review follows the Remedial Design/Remedial Action PRP - Lead Project Quality Assurance Project Plan (November 2001, Rev. 0) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

Samples indicated by a double asterisk on the front cover underwent a EPA Level IV review. A EPA Level III review was performed on all of the other samples. Raw data were not evaluated for the samples reviewed by Level III criteria since this review is based on QC data.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B Compound or analyte was positively detected in a sample and in an associated blank.
- UB Compound or analyte is not detected at or above the indicated concentration due to blank contamination.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/MS Instrument Performance Check

Instrument performance was checked at 12 hour intervals. All ion abundance requirements were met.

III. Initial Calibration

Initial calibration was performed using required standard concentrations.

Percent relative standard deviations (%RSD) were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%RSD	Associated Samples	Flag	A or P
10/19/06	Acetone	42.3	All samples in SDG 11287	J (all detects) UJ (all non-detects)	A
	1,2-Dibromo-3-chloropropane	31.3		J (all detects) UJ (all non-detects)	

Average relative response factors (RRF) for all volatile target compounds and system monitoring compounds were within validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 25.0% with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/20/06	Chloromethane	25.5	All samples in SDG 11287	J (all detects) UJ (all non-detects)	Α

All of the continuing calibration RRF values were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No volatile contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Anaiysis Date	Compound TIC (RT in minutes)	Concentration	Associated Samples
VBLKTD	10/21/06	Acetone	5.8 ug/L	ACSGWPWBRE28** TRIP BLANK
VHBLKRM	10/23/06	Acetone	6.4 ug/L	ACSGWPWBRE28** TRIP BLANK

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported	Modified Final
	TIC (RT in minutes)	Concentration	Concentration
TRIP BLANK	Acetone	9.2 ug/L	9.2UB ug/L

Sample "TRIP BLANK" was identified as a trip blank. No volatile contaminants were found in this blank with the following exceptions:

Trip Blank ID	Sampling Date	Compound	Concentration	Associated Samples
TRIP BLANK	10/19/06	Methylene chloride Acetone Chloroform 2-Butanone cis-1,2-Dichloroethene Trichloroethene Tetrachloroethene	0.49 ug/L 9.2 ug/L 0.17 ug/L 40 ug/L 0.16 ug/L 0.18 ug/L 0.11 ug/L	ACSGWPWBRE28**

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated field blanks.

VI. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the SOW. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Laboratory control samples (%R) was not required by the method.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Target Compound Identifications

All target compound identifications were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XII. Compound Quantitation and CRQLs

All compound quantitation and CRQLs were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIII. Tentatively Identified Compounds (TICs)

All tentatively identified compounds were within validation criteria for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XIV. System Performance

The system performance was acceptable for samples on which a EPA Level IV review was performed. Raw data were not evaluated for the samples reviewed by Level III criteria.

XV. Overall Assessment of Data

Data flags have been summarized at the end of the report if data has been qualified.

XVI. Field Duplicates

No field duplicates were identified in this SDG.

ACS Residential Volatiles - Data Qualification Summary - SDG 11287

SDG	Sample .	Compound	Flag	A or P	Reason
11287	ACSGWPWBRE28** TRIP BLANK	Acetone 1,2-Dibromo-3-chloropropane	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A	Initial calibration (%RSD)
11287	ACSGWPWBRE28** TRIP BLANK	Chloromethane	J (all detects) UJ (all non-detects)	A	Continuing calibration (%D)

ACS Residential Volatiles - Laboratory Blank Data Qualification Summary - SDG 11287

SDG	Sample	Compound TIC (RT in minutes)	Modified Final Concentration	A or P
11287	TRIP BLANK	Acetone	9.2UB ug/L	А

ACS Residential Volatiles - Field Blank Data Qualification Summary - SDG 11287

No Sample Data Qualified in this SDG

1LCA LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

ACSGWPWBRE28

Lab Name: COMPUCHEM

Contract: OLC03-REVS

Lab Code: LIBRTY Case No.:

Client No.: SDG No.: 11287

Lab Sample ID: 1128701

Date Received: 10/20/2006

Lab File ID: 1128701A71

Date Analyzed: 10/21/2006

Purge Volume: 25.0 (ML)

Dilution Factor: 1.0

GC Column: SPB-624 ID: 0.32 (MM)

Length: 60.0(M)

, 		CONCENIED A MITON INTERIO	
G1 G 170	COMPOUND	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(UG/L)	Q
============		=======================================	====
75-71-8	Dichlorodifluoromethane	0.50	U
74-87-3	Chloromethane	0.50	IN a
75-01-4	Vinyl Chloride	0.50	U
74-83-9	Bromomethane	0.50	Ū
75-00-3	Chloroethane	0.50	Ü
75-69-4	Trichlorofluoromethane	0.50	Ū
75-35-4	1,1-Dichloroethene	0.50	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	Ū
67-64-1	Acetone	5.0	UUJ
75-15-0	Carbon Disulfide	0.50	Ū
79-20-9	Methyl Acetate	0.50	Ū
75-09-2	Methylene Chloride	0.50	Ü
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-Butyl Ether	0.50	Ü
75-34-3	1,1-Dichloroethane	0.50	Ū
156-59-2	cis-1,2-Dichloroethene	0.50	ਹ
78-93-3	2-Butanone	5.0	Ū
74-97-5	Bromochloromethane	0.50	ਹ
67-66-3	Chloroform	0.50	Ū
71-55-6	1,1,1-Trichloroethane	0.50	Ū
110-82-7	Cyclohexane	0.50	Ū
56-23-5	Carbon Tetrachloride	0.50	U
71-43-2	Benzene	0.50	Ū
107-06-2	1,2-Dichloroethane	0.50	U

FORM I LCV-1

1LCB LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

ACSGWPWBRE28

Lab Name: COMPUCHEM

Contract: OLC03-REVS

Lab Code: LIBRTY Case No.:

Client No.:

SDG No.: 11287

Lab Sample ID: 1128701

Date Received: 10/20/2006

Lab File ID: 1128701A71

Date Analyzed: 10/21/2006

Purge Volume: 25.0 (ML)

Dilution Factor: 1.0

GC Column: SPB-624 ID: 0.32 (MM)

Length: 60.0(M)

CAS NO.	COMPOUND	CONCENTRATION UNITS: (UG/L)	Q
79-01-6	Trichloroethene	0.50	==== U
108-87-2	Methylcyclohexane	0.50	U
78-87-5	1,2-Dichloropropane	0.50	Ū
75-27-4	Bromodichloromethane	0.50	U
10061-01-5	cis-1,3-Dichloropropene	0.50	U
108-10-1	4-Methyl-2-Pentanone	5.0	U
108-88-3	Toluene	0.50	U
10061-02-6	trans-1,3-Dichloropropene	0.50	Ū
79-00-5	1,1,2-Trichloroethane	0.50	Ū
127-18-4	Tetrachloroethene	0.50	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	0.50	Ū
106-93-4	1,2-Dibromoethane	0.50	Ū
108-90-7	Chlorobenzene	0.50	Ū
100-41-4	Ethylbenzene	0.50	U
1330-20-7	Xylene (Total)	0.50	Ū
100-42-5	Styrene	0.50	Ū
75-25-2	Bromoform	0.50	Ū
98-82-8	Isopropylbenzene	0.50	Ŭ
79-34-5	1,1,2,2-Tetrachloroethane	0.50	U
541-73-1	1,3-Dichlorobenzene	0.50	Ū
106-46-7	1,4-Dichlorobenzene	0.50	Ū
95-50-1	1,2-Dichlorobenzene	0.50	ਹ
	1,2-Dibromo-3-Chloropropane	0.50	נע ט
120-82-1	1,2,4-Trichlorobenzene	0.50	Ū
87-61-6	1,2,3-Trichlorobenzene	0.50	Ū

FORM I LCV-2

1LCF LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

ACSGWPWBRE28

Lab Name: COMPUCHEM

Contract: OLC03-REVS

Lab Code: LIBRTY Case No.:

Client No.:

SDG No.: 11287

Lab Sample ID: 1128701

Date Received: 10/20/2006

Lab File ID: 1128701A71

Date Analyzed: 10/21/2006

Purge Volume: 25.0 (ML)

Dilution Factor: 1.0

GC Column: SPB-624

ID: 0.32 (MM)

Length: 60.0(M)

Number TICs found: 0

	a. c. 187000			EST. CONC.	
1	CAS NUMBER	COMPOUND NAME	RT	(UG/L)	Q
===	=======================================	_======================================	======	*==========	=====
01					
02					
03					
04					
05					
06					
07					
08					
09					
10		<u> </u>			
11					
12 13					
14 15					
16					
$-\frac{10}{17}$					
18					
19					
20					
$\frac{20}{21}$					
22					
23					
24					
25					
26					
$\frac{25}{27}$					[
28					
29					[
30					

FORM I LCV-TIC

1LCA LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TRIPBLANK

Lab Name: COMPUCHEM

Contract: OLC03-REVS

Lab Code: LIBRTY Case No.:

Client No.:

SDG No.: 11287

Lab Sample ID: 1128702

Date Received: 10/20/2006

Lab File ID: 1128702A71

Date Analyzed: 10/21/2006

Purge Volume: 25.0 (ML)

Dilution Factor: 1.0

GC Column: SPB-624

ID: 0.32 (MM)

Length: 60.0(M)

CAS NO.	COMPOUND	CONCENTRATION UNITS:	Q
75-71-8	Dichlorodifluoromethane	0.50	U U
74-87-3			
	Chloromethane	0.50	UU
75-01-4	Vinyl Chloride	0.50	
74-83-9	Bromomethane	0.50	Ü
75-00-3	Chloroethane	0.50	Ü
75-69-4	Trichlorofluoromethane	0.50	Ŭ
	1,1-Dichloroethene	0.50	Ü
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	Ū
67-64-1	Acetone	9.2	BUP
75-15-0	Carbon Disulfide	0.50	Ü
79-20-9	Methyl Acetate	0.50	Ū
75-09-2	Methylene Chloride	0.49	J
156-60-5	trans-1,2-Dichloroethene	0.50	U
1634-04-4	Methyl tert-Butyl Ether	0.50	U
75-34-3	1,1-Dichloroethane	0.50	Ü
156-59-2	cis-1,2-Dichloroethene	0.16	J
78-93-3	2-Butanone	40	
74-97-5	Bromochloromethane	0.50	U
67-66-3	Chloroform	0.17	J
71-55-6	1,1,1-Trichloroethane	0.50	Ū
110-82-7	Cyclohexane	0.50	Ū
56-23-5	Carbon Tetrachloride	0.50	Ū
71-43-2	Benzene	0.50	Ū
107-06-2	1,2-Dichloroethane	0.50	Ū

FORM I LCV-1

1LCB LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

TRIPBLANK

Lab Name: COMPUCHEM

Contract: OLC03-REVS

Lab Code: LIBRTY Case No.: Client No.:

SDG No.: 11287

Lab Sample ID: 1128702

Date Received: 10/20/2006

Lab File ID: 1128702A71

Date Analyzed: 10/21/2006

Purge Volume: 25.0 (ML)

Dilution Factor: 1.0

GC Column: SPB-624

ID: 0.32(MM)

Length: 60.0(M)

CONCENTRATION UNITS: COMPOUND CAS NO. (UG/L) 0 79-01-6 | Trichloroethene 0.18 J 108-87-2 Methylcyclohexane 0.50 U 78-87-5 1,2-Dichloropropane 0.50 Ū 75-27-4 Bromodichloromethane 0.50 Ū 10061-01-5 | cis-1,3-Dichloropropene 0.50 Ū 108-10-1 4-Methyl-2-Pentanone IJ 5.0 108-88-3 | Toluene 0.50 10061-02-6 trans-1,3-Dichloropropene 0.50 Ū 79-00-5 1,1,2-Trichloroethane 0.50 TĪ 127-18-4 Tetrachloroethene 0.11 591-78-6 2-Hexanone 124-48-1 Dibromochloromethane 106-93-4 1,2-Dibromoethane 108-90-7 Chlorobenzene 5.0 0.50 ij Ū 0.50 $\overline{\mathbf{U}}$ Ū 0.50 100-41-4 Ethylbenzene 0.50 Ū 1330-20-7 Xylene (Total) Ū 0.50 Styrene Bromoform 100-42-5 0.50 Ū 75-25-2 0.50 $\overline{f U}$ 98-82-8 Isopropylbenzene
79-34-5 1,1,2,2-Tetrachloroethane
541-73-1 1,3-Dichlorobenzene Ū 0.50 0.50 Ū 0.50 Ū 106-46-7 1,4-Dichlorobenzene $\overline{f U}$ 0.50 95-50-1 1,2-Dichlorobenzene Ū 0.50 96-12-8 1,2-Dibromo-3-Chloropropane 0.50 UUJ 120-82-1 1,2,4-Trichlorobenzene 0.50 Ū 87-61-6 [1,2,3-Trichlorobenzene 0.50

FORM I LCV-2

1LCF LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS EPA SAMPLE NO.

TRI	PBI	ANK
-----	-----	-----

Lab Name: COMPUCHEM

Contract: OLC03-REVS

Lab Code: LIBRTY Case No.:

Client No.:

SDG No.: 11287

Lab Sample ID: 1128702

Date Received: 10/20/2006

Lab File ID: 1128702A71

Date Analyzed: 10/21/2006

Purge Volume: 25.0 (ML)

Dilution Factor: 1.0

GC Column: SPB-624 ID: 0.32 (MM)

Length: 60.0(M)

Number TICs found: 0

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC. (UG/L)	Q
01	====================================		=======	=========	=====
02		_			
03					
04					
05					
06			ļ		
07					
08					
10					<u> </u>
11		 			
12					
13			· · · · · · · · · · · · · · · · · · ·		
14					
1.5					
16					
17					
18			·		
1-30					
20					
1 -41					
19 20 21 22 23					
$\frac{23}{24}$					
25					
1 26					 [
26 27					 [
28					
29				· · · · · · · · · · · · · · · · · · ·	
30					

FORM I LCV-TIC

LDC #:	15715A1	_ VALIDATION COMPLETENESS WORKSHEET	Date:
SDG #:_	11287	Level III/IV	Page: 1 of 1
Laborato	ry: CompuChem		Reviewer: 7
METHO	D: GC/MS VOA (EP	A CLP SOW OLIGO3.2)	7

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
	Technical holding times	Δ	Sampling dates: 10 19 0 6
11.	GC/MS Instrument performance check	A	
111.	Initial calibration	VB VB	
IV.	Continuing calibration	SW	
V.	Blanks	53	
VI.	Surrogate spikes	A	dient speciful
VII.	Matrix spike/Matrix spike duplicates	7	may proposed by mather
VIII.	Laboratory control samples	2	not required by method
IX.	Regional Quality Assurance and Quality Control	N	
X.	Internal standards	A	
XI.	Target compound identification	A	Not reviewed for Level III validation.
XII.	Compound quantitation/CRQLs	Δ	Not reviewed for Level III validation.
XIII.	Tentatively identified compounds (TICs)	A	Not reviewed for Level III validation.
XIV.	System performance	Δ	Not reviewed for Level III validation.
XV.	Overall assessment of data	Δ	
XVI.	Field duplicates	N	
XVII.	Field blanks	SW	TB = 2

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples: *** Indicates sample underwent Level IV validation

	waler						
1	ACSGWPWBRE28**	11 1	VBLKTD	21		31	
ž i	TRIP BLANK	12 2	VBLKTJ	22		32	
3		132	VHBLKRM (Sto	833	e 1814)	33	
4		14		24	/	34	
5	·	15		25		35	
6		16		26		36	
7		17		27		37	
8		18		28		38	
9		19		29		39	
10		20		30		40	

LDC#: 15715A)
SDG#: 11287

VALIDATION FINDINGS CHECKLIST

Method: Volatiles (EPA CLP SOW OLC03.2)

Validation Area	Yes	No	NA	Findings/Comments
. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.	/			
II. GCAMS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
III. Initial calibration	1	1		T
Did the laboratory perform a 5 point calibration prior to sample analysis?		ļ		
Were all percent relative standard deviations (%RSD) ≤ 30% and relative response factors (RRF) > 0.05?		_		
IV. Continuing calibration	,	ı	•	
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) \leq 30% and relative response factors (RRF) \geq 0.05?				
V. Blanks	т	·		T
Was a method blank associated with every sample in this SDG?		<u> </u>		
Was a method blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	<u> - </u>			
VI. Deuterated Monitoring Compound spikes		,		т
Were all Deuterated Monitoring Compound (DMC) %R within QC limits?				
If the percent recovery (%R) for one or more DMC was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			_	ſ
VII. Matrix spike/Matrix spike duplicates	•	ı —		
Was a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for this SDG?	ļ	/	•	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII. Laboratory control samples	,			·
Was an LCS analyzed for this SDG?			х	
Was an LCS analyzed per analytical batch?			x	
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?			x	

LDC#: 15715A/ SDG#: 11287

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
IX. Regional Quality Assurance and Quality Control				_
Were performance evaluation (PE) samples performed?		ļ	х	
Were the performance evaluation (PE) samples within the acceptance limits?			x	
X. Internal standards				
Were internal standard area counts within +/-40% from the associated calibration standard?	_			·
Were retention times within +/- 20.0 seconds from the associated calibration standard?		[********	
XI Target compound identification		ı	1	T
Were relative retention times (RRT's) within + 0.06 RRT units of the standard?		ļ	_	
Did compound spectra meet specified EPA "Functional Guidelines" criteria?			_	
Were chromatogram peaks verified and accounted for?				
XII. Compound quantitation/CRQLs		1		Г
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?			_	
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		_		
XIII. Tentatively identified compounds (TICs)				
Were the major ions (> 25 percent relative intensity) in the reference spectrum evaluated in sample spectrum?	/			
Were relative intensities of the major ions within <u>+</u> 20% between the sample and the reference spectra?	1			
Did the raw data indicate that the laboratory performed a library search for all required peaks in the chromatograms (samples and blanks)?	/			
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XVI. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				
XVII. Field blanks				
Field blanks were identified in this SDG.		· .		
Target compounds were detected in the field blanks.	_			

TARGET COMPOUND WORKSHEET

OLC03.2

METHOD: VOA (EPA CLP SOW QLM04.2)

			I was Barrahaman	MARIA Manhahalana
A. Chloromethane*	Q. 1,2-Dichloropropane**	GG. Xylenes, total	WW. Bromobenzene	MMM. Naphthalene
B. Bromomethane	R. cis-1,3-Dichloropropene	HH. Vinyl acetate	XX. 1,2,3-Trichloropropane	NNN. 1,2,3-Trichlorobenzene
C. Vinyl choride**	S. Trichloroethene	II. 2-Chioroethylvinyl ether	YY. n-Propylbenzene	OOO. 1,3,5-Trichlorobenzene
D. Chloroethane	T. Dibromochloromethane	JJ. Dichlorodifluoromethane	ZZ. 2-Chlorotoluene	PPP, trans-1,2-Dichloroethene
E. Methylene chloride	U. 1,1,2-Trichloroethane	KK. Trichlorofluoromethane	AAA. 1,3,5-Trimethylbenzene	QQQ. cis-1,2-Dichloroethene
F. Acetone	V. Benzene	LL. Methyl-tert-butyl ether	BBB. 4-Chlorotoluene	RRR. m,p-Xylenes
G. Carbon disulfide	W. trans-1,3-Dichloropropene	MM. 1,2-Dibromo-3-chloropropane	CCC. tert-Butylbenzene	SSS. o-Xylene
H. 1,1-Dichloroethene**	X. Bromoform*	NN. Diethyl ether	DDD. 1,2,4-Trimethylbenzene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane
I. 1,1-Dichloroethane*	Y. 4-Methyl-2-pentanone	OO. 2,2-Dichloropropane	EEE. sec-Butylbenzene	UUU. Benzyl chloride
J. 1,2-Dichloroethene, total	Z. 2-Hexanone	PP. Bromochloromethane	FFF. 1,3-Dichiorobenzene	VVV. 4-Ethyltoluene
K. Chloroform**	AA. Tetrachioroethene	QQ. 1,1-Dichloropropene	GGG. p-isopropyltoluene	WWW. Ethanol
L. 1,2-Dichioroethane	BB. 1,1,2,2-Tetrachloroethane*	RR. Dibromomethane	HHH. 1,4-Dichtorobenzene	XXX. Ethyl ether
M. 2-Butanone	CC. Toluene**	SS. 1,3-Dichloropropane	iii. n-Butyibenzene	
N. 1,1,1-Trichloroethane	DD. Chlorobenzene*	TT. 1,2-Dibromoethane	JJJ. 1,2-Dichlorobenzene	
O. Carbon tetrachloride	EE. Ethylbenzene**	UU. 1,1,1,2-Tetrachioroethane	KKK. 1,2,4-Trichlorobenzene	
P. Bromodichloromethane	FF. Styrene	W. Isopropylbenzene	LLL. Hexachlorobutadiene	

* = System performance check compounds (SPCC) for RRF; ** = Calibration check compounds (CCC) for %RSD.				
Notes:				
• • • • • • • • • • • • • • • • • • • •				

LDC #:_	15715A
SDG #:	11287

VALIDATION FINDINGS WORKSHEET Initial Calibration

	Page:_	/_of/_
	Reviewer:	13
nd	Reviewer:	<u> </u>

OLC03.2

METHOD: GC/MS VOA (EPA CLP SOW GLM04.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A

Did the laboratory perform a 5 point calibration prior to sample analysis? Were all percent relative standard deviations (%RSD) \leq 30% and relative response factors (RRF) \geq 0.05? Y N N/A

#	Date	Standard ID	Compound	Finding %RSD (Limit: <30.0%)	Finding RRF (Limit: ≥0.05)	Associated Samples	Qualifications
	10/9/06	ICA L	F	42.3		AII+BIK	J/W/A
			MM	31.3			
						<u> </u>	
		····			,		
					<u> </u>		
		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		<u> </u>		<u> </u>	
						<u> </u>	<u> </u>
				ļ			
	<u> </u>						
			-				
							
			 	 			
	 				 	ļ	
			<u> </u>			•	
			<u> </u>		<u> </u>		<u> </u>
		· · · · · · · · · · · · · · · · · · ·	 			 	<u> </u>
	<u> </u>		<u> </u>	<u></u>			<u></u>

LDC #:_	15715A1
SDG #:_	11287

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page:	<u>/of/</u>
Reviewer:_	<i>F</i>
2nd Reviewer:_	18

04003.2

METHOD: GC/MS VOA (EPA CLP SOW OLMO4:2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument? Were all percent differences (%D) \leq 25% and relative response factors (RRF) \geq 0.05? Y N N/A

Y N N/A

#	N/A We	Standard ID	Compound	Finding %D (Limit: ≤25.0%)	Finding RRF (Limit: <u>></u> 0.05)	Associated Samples	Qualifications
	10/20/06	ccv	Δ	25.5		All+BIK	ALUL
	2326						
				, , , , , , , , , , , , , , , , , , , ,			
	i i						
			· · · · · · · · · · · · · · · · · · ·	<u> </u>			
	<u> </u>				•		
<u> </u>						·	

LDC #: 15715A VALIDATION FINDINGS WORKSHEET								Pé	age: <u></u>	
SDG #: 11287		OLC03.2	-	<u>Bla</u>	<u>nks</u>			•	Revie	
METHOD: GC/MS VOA (EF	PA CLP SOW	OLM04: 2)							2nd Revie	wer:
Please see qualifications be	elow for all qu	uestions answ	ered "N". Not	applicable qu	uestions are i	dentified as "	N/A".			
Y N N/A Was a meti	hod blank ass	sociated with	every sample	in this SDG?			O			
	hod blank an	alyzed at leas	t once every	12 hours for (each matrix a	ina concentra	won'?			
Y N N/A Was there of Blank analysis date: 10	contamination		od blanks? If	yes, piease s	ee uie qualiik	cauons below	'•			
Conc. units: val	121100,	10/23/04	, . Δe	sociated Sam	nnies	1.2	•			
Conc. units. Val	`\`			Scolated Car					<u></u>	
Compound	Blank ID		8 lank		\$	ample identifica	tlon	·		-
	VBLKTD	X	VHBLKEN	\ .	2					
Methylene ehloride										
Acetone	5.8	9.2/013	6.4		9.2/UB					
CRQL										
TiCs:									<u></u>	
Hexamethyl-cyclotrisiloxane					·					
Octamethyl-cyclotetrasiloxane										
				-						
		<u> </u>								
	1									
							i			
				ļ						
	H		Ì	1		}				

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Note: Common contaminants such as Methylene chloride, Acetone, 2-Butanone, Carbon disulfide and TICs that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

SDG #: 1287 METHOD: GC/MS VOA (EPAY N N/A Were field by N N/A Were target Blank units: Wall Ass Sampling date: 10 19 Field blank type: (circle one	A CLP SOW 6 lanks identifie compounds c sociated sam 0 6	d in this SDG detected in th nple units:	i? le field blanks		<u>Blanks</u>		es:	ND)	Pa Revie 2nd Revie	age: <u>/</u> of <u>/</u> wer: <u>/</u> 7 wer: <u>/</u> 2
Compound	Blank ID		Sample identification							
	2			· · · · · · · · · · · · · · · · · · ·						
Methylene chloride	0.49 -									
Acetone	9.2,									
C hloroform	0.17-				F**					
M	40 /									
ब्रब्	0.16			!						
S	0.18									· · · · · · · · · · · · · · · · · · ·
CATOL AA	0,11					! !	<u> </u>			
Blank units: As Sampling date: Field blank type: (circle one			•	her:	Asso	ciated Sampl	es:			
Compound	Blank ID		T		S	ample identifica	tion	<u> </u>		
					<u> </u>	<u> </u>	1	<u> </u>		
Methylene chloride					<u> </u>	<u> </u>				i
Acetone							<u> </u>			
Chloroform							! 			· · · · · · · · · · · · · · · · · · ·
						<u> </u>				
										·

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

CRQL

LDC #: 15715A SDG #: 11287

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	Page:_	of	/
	Reviewer:_	17	
2nd	Reviewer:_	a	

OLC03.2

METHOD: GC/MS VOA (EPA CLP SOW OLMO4:2)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF = $(A_{\nu})(C_{\mu})/(A_{\mu})(C_{\nu})$ average RRF = sum of the RRFs/number of standards %RSD = 190 * (S/X) $A_x =$ Area of compound,

A_k = Area of associated internal standard

C_x = Concentration of compound, S = Standard deviation of the RRFs C_k = Concentration of internal standard

X = Mean of the RRFs

		·		Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF	RRF ()25 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	10/19/06	Methylene chloride (1st internal standard)	0-210	0.210	0.219	0.219	3,0	3.0
			Ethy Benzine Trichlorethene (2nd internal standard)	1.843	1.843	1.710	1.710	13.0	13.0
			Toluene (3rd internal standard)	1.284	1.284	1. 241	1.241	5.0	5.0
2			Methylene chloride (1st internal standard)						
		<u> </u> 	Trichlorethene (2nd internal standard)						
			Toluene (3rd internal standard)		<u> </u>				
3	l.	·	Methylene chloride (1st internal standard)						
			Trichlorethene (2nd internal standard)						
			Toluene (3rd internal standard)						
4			Methylene chloride (1st internal standard)						
			Trichlorethene (2nd internal standard)						
		<u> </u>	Toluene (3rd internal standard)						

Comments:	Refer to	<u>Initial</u>	Calibration findings	worksheet for li	ist of qualifications	and as	sociated samples	when	reported	results o	do not agr	ee within	10.0% of the
recalculated	results.				•								
												·	

LDC #:	15715A
SDG #:	11287

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

	Page:_	<u></u>	_
	Reviewer:_	17	
2nd	Reviewer:	a.	

01003.2

METHOD: GC/MS VOA (EPA CLP SOW OLMO4.2)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{\underline{\bullet}})/(A_{\underline{\bullet}})(C_{\underline{\bullet}})$

RRF = continuing calibration RRF

A_{in} = Area of associated internal standard

A = Area of compound, $C_x = Concentration of compound,$

C_k = Concentration of Internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	cer	10 20 06	Methylene chloride (1st internal standard)	0.219	0.198	0.198	9.6	9.6
			Trichlosthene (2nd internal standard)	1.710	1.780	1-780	4.1	4.
			Toluene (3rd internal standard)	1.241	1.195	1.195	3.7	3.7
2			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd internal standard)					
			Toluene (3rd internal standard)					
3			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd Internal standard)					
			Toluene (3rd internal standard)					
4			Methylene chloride (1st internal standard)					
			Trichlorethene (2nd internal standard)					
			Toluene (3rd internal standard)		·			

Comments:	Refer to	Continuing	Calibration findings	worksheet for li	st of qualifications	and	associated	samples whe	n reported results	do not agree with	nin 10.0%
of the recalc	ulated res	ults.									
					· · · · · · · · · · · · · · · · · · ·						
											

LDC #:_	15715A
SDG #:	11287

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:_	of
Reviewer:	<u> </u>
2nd reviewer:	
	

METHOD: GC/MS VOA (EPA CLP SOW OLMO4:2)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: #

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Tokunada vinyl chlorideda	S -0	5.4	108	108	O
Bromofluorobenzene		5.1	102	102	
Bromoffuorobenzene -d5 rinbroethane -d5 1,2 Dichlereethdreedf chloroethous		4.2	84	४५	

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
	·		Reported	Recalculated	
Iowened8 2-Butamone -d5	5.0	6.0	120	120	0
Globaro berm -d		5.2	104	104	
1,2 Dichloroothane-d4 hope thans	V	5.0	100	100	

Sample ID:___

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Tologne-de Benzene -de	5.0	ζ. γ	104	104	0
Bromefluorobenzene					
1,24Dichloroethans-84					

Sample ID:____

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					

Sample ID:___

	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
			Reported	Recalculated	
Toluene-d8					
Bromofluorobenzene					
1,2-Dichloroethane-d4					

SURRCALC.1C4

LDC #:	15715A
SDG #:	11287

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	of
Reviewer:_	Fi
2nd reviewer:	

OLC03.2

METHOD; G	C/MS	VOA	(EPA	CLP	SOW	QLM04.2)
-----------	------	-----	------	-----	-----	----------------------

Y N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concer	tration	$(A_{\bullet})(I_{\bullet})(DF)$ $(A_{\bullet})(RRF)(V_{\bullet})(%S)$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D:
A _L	=	Area of the characteristic ion (EICP) for the specific internal standard	
t,	=	Amount of internal standard added in nanograms (ng)	Conc. = () () () ()
RRF	=	Relative response factor of the calibration standard.	$\mathcal{N} \setminus \mathcal{O}$
٧.	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).	
Df	=	Dilution factor.	
%S	=	Percent solids, applicable to soils and solid matrices only.	

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration	Qualification
-			 		
					
		<u> </u>	 	 	<u> </u>
			 	<u> </u>	
			 		
					·
		·			
	i 				
				· · · · · · · · · · · · · · · · · · ·	·
					

ACS Residential Data Validation Reports LDC# 15715

Chlorinated Pesticides & PCBs

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

ACS Residential

Collection Date:

October 19, 2006

LDC Report Date:

November 13, 2006

Matrix:

Water

Parameters:

Chlorinated Pesticides & PCBs

Validation Level:

EPA Level IV

Laboratory:

CompuChem

Sample Delivery Group (SDG): 11287

Sample Identification

ACSGWPWBRE28

Introduction

This data review covers one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Contract Laboratory Program Statement of Work OLC03.2 for Chlorinated Pesticides and PCBs.

The review follows the Remedial Design/Remedial Action PRP - Lead Project Quality Assurance Project Plan (November 2001, Rev. 0) and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) as there are no current guidelines for the method stated above.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified a P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Blank results are summarized in Section V.

Field duplicates are summarized in Section XIV.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- N Presumptive evidence of presence of the constituent.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- B Compound or analyte was positively detected in a sample and in an associated blank.
- UB Compound or analyte is not detected at or above the indicated concentration due to blank contamination.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. GC/ECD Instrument Performance Check

A Resolution check mixture was analyzed at the beginning of the initial calibration sequence on each GC column. The resolution between adjacent peaks of required compounds was greater than or equal to 60%.

Performance evaluation mixtures (PEM) were analyzed at the proper frequency. The resolution between adjacent peaks was 90% on both GC columns. The absolute retention times for the initial and continuing PEMs were within the calculated retention time windows based on the three-point initial calibration.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 20.0% and the combined breakdowns were less than or equal to 30.0%.

The relative percent difference (RPD) of amount in PEMs were within 25.0% QC limits.

III. Initial Calibration

Initial calibration sequence was followed as required.

Initial calibration of single and multicomponent compounds was performed for both columns at proper frequencies.

The retention time windows were established according to the method.

The percent relative standard deviations (%RSD) of calibration factors for selected single component compounds were within the 20.0% QC limits for selected compounds and were within the 25.0% QC limits for alpha-BHC and beta-BHC.

All required peaks for multicomponent compounds were present.

IV. Continuing Calibration

Continuing calibration sequence was followed as required. No more than 12 hours elapsed between continuing calibration analyses in an analytical sequence.

The retention times (RT) of all compounds in Individual Mix and multicomponent standards were within QC limits.

The relative percent differences (RPD) of amount in Individual Mix standards were within the 25.0% QC limits.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No chlorinated pesticide or PCB contaminants were found in the method blanks.

Instrument blank analyses were performed at the required frequencies. No chlorinated pesticide or PCB contaminants were found in the instrument blanks.

No field blanks were identified in this SDG.

VI. Surrogate Spikes

Surrogates were added to all samples, standards and blanks as required by the SOW. All surrogate recoveries (%R) were within QC limits of 30-150% with the following exceptions:

Sample	Column	Surrogate	%R (Limits)	Compound	Flag	A or P
ACSGWPWBRE28	RTXCLPI	Decachlorobiphenyl	158 (30-150)	All TCL compounds	J (all detects)	Р
ACSGWPWBRE28	RTXCLPII	Decachlorobiphenyl	156 (30-150)	All TCL compounds	J (all detects)	Р

The retention times for surrogates were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples (LCS)

Although laboratory control samples were not required by the method, laboratory control samples were reported by the laboratory. Percent recoveries (%R) and relative percent differences (RPD) were within QC limits.

IX. Regional Quality Assurance and Quality Control

Not applicable.

X. Pesticide Cleanup Checks

a. Florisil Cartridge Check

Florisil cartridge checks were performed at the required frequency and all compounds were within the 80-120% recovery QC criteria.

b. GPC Calibration

GPC cleanup is not required for water samples and was not performed.

XI. Target Compound Identification

All target compound identifications were within validation criteria.

XII. Compound Quantitation and Reported CRQLs

All compound quantitation and reported CRQLs were within validation criteria.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

No field duplicates were identified in this SDG.

ACS Residential Chlorinated Pesticides & PCBs - Data Qualification Summary - SDG 11287

SDG	Sample	Compound	Flag	A or P	Reason
1 1287	ACSGWPWBRE28	All TCL compounds	J (all detects)	Р	Surrogate recovery (%R)

ACS Residential Chlorinated Pesticides & PCBs - Laboratory Blank Data Qualification Summary -SDG 11287

No Sample Data Qualified in this SDG

ACS Residential Chlorinated Pesticides & PCBs - Field Blank Data Qualification Summary - SDG 11287

No Sample Data Qualified in this SDG

1LCE LOW CONCENTRATION WATER PESTICIDE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

ACSGWPWBRE28

Lab Name: COMPUCHEM

Contract: OLC03-REVS

Lab Code: LIBRTY Case No.:

Client No.:

SDG No.: 11287

Lab Sample ID: 1128701

Date Received: 10/20/2006

Sample Volume:

1100 (ML)

Date Extracted: 10/21/2006

Concentrated Extract Volume: 2000(UL)

Date Analyzed: 10/27/2006

Injection Volume:

1.0(UL)

Dilution Factor: 1.0

Sulfur Cleanup: (Y/N) Y

Extraction: (Sepf/Cont) SEPF

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(UG/L)	Q
=======================================	=======================================	=======================================	=====
319-84-6	alpha-BHC	0.010	บ
319-85-7	beta-BHC	0.010	Ŭ
319-86-8	delta-BHC	0.010	Ü
58-89-9	gamma-BHC (Lindane)	0.010	U
76-44-8	Heptachlor	0.010	Ū
309-00-2	Aldrin	0.010	Ū
1024-57-3	Heptachlor epoxide	0.010	Ū
959-98-8	Endosulfan I	0.010	Ū
60-57-1	Dieldrin	0.020	U
72-55-9	4,4'-DDE	0.020	Ū
72-20-8	Endrin	0.020	Ŭ
33213-65-9	Endosulfan II	0.020	U
72-54-8	4,4'-DDD	0.020	Ü
1031-07-8	Endosulfan sulfate	0.020	U
50-29-3	4,4'-DDT	0.020	Ū
72-43-5	Methoxychlor	0.10	Ū
53494-70-5	Endrin ketone	0.020	Ŭ
7421-93-4	Endrin aldehyde	0.020	U
5103-71-9	alpha-Chlordane	0.010	Ū
5103-74-2	gamma-Chlordane	0.010	Ū
8001-35-2	Toxaphene	1.0	Ü
12674-11-2	Aroclor-1016	0.20	Ü
11104-28-2	Aroclor-1221	0.40	Ŭ
11141-16-5	Aroclor-1232	0.20	Ŭ
53469-21-9	Aroclor-1242	0.20	U
12672-29-6	Aroclor-1248	0.20	U
11097-69-1	Aroclor-1254	0.20	Ü
11096-82-5	Aroclor-1260	0.20	U

FORM I LCP

G #: 11287 poratory: CompuChem		oo/DCBo /F		Level IV				21	Pag	ate: ///7 ge: _/ of _/ ver:
THOD: GC Chlorinated samples listed below w dation findings workshee	ere revie	·		OLC	03.2	n areas. V	/alidation	findings	are noted	in attache
Validati	on Area						Commer	nts		
Technical holding times			1	Sampling	dates:	10/19	106			
II. GC/ECD Instrument Per	formance	Check	A							
II. Initial calibration			4	% RSD	= 20	پس بوء ن	t alph	n BHC	6 X°	/
V. Continuing calibration			A		£ >5°	10	det	ta		
V. Blanks			A							
/I. Surrogate spikes			رسى			lint	spe i	pied		
/II. Matrix spike/Matrix spike	duplicate	s	N	+al	P	0	यो रचर्क	p-7 ~	· Hund }	
III. Laboratory control samp	les		A	بر	5 10			-		
X. Regional quality assurar	ce and qu	ality control	N							
(a. Florisil cartridge check			4							
(b. GPC Calibration			N							
KI. Target compound identif	ication		A							
(II. Compound quantitation	and report	ed CRQLs	A							
(III. Overall assessment of d	ata		4							
IV. Field duplicates		· ·	N			-				
(V. Field blanks			N			<u>-</u> -	-	-		
e: A = Acceptable N = Not provided/applica SW = See worksheet	able	R = Rir	lo compound isate ield blank	ds detected	Т	e Duplicate B = Trip bla B = Equipm	nk	. 		· · · · · · · · · · · · · · · · · · ·
ACSGWPWBRE28	117	PBLKO	2 8/2	21			31	T		
HOSGWE WOREZO	12	PIBU		22			32			
	- '^- -	1 ,- 01		- 22	 			- 		

1	ACSGWPWBRE28	111	IPPLKONI	121	
2		12	PIBLKONI PIBLKONI	22	32
3		13		23	33
4_		14		24	34
5		15		25	35
6		16		26	36
7		17		27	37
8	<u> </u>	18		28	38
9		19		29	39
10		20		30	40

VALIDATION FINDINGS WORKSHEET

METHOD: Pesticide/PCBs (EPA CLP SOW OLAG) 4.2)

A. alpha-BHC	I. Dieldrin	Q. Endrin ketone	Y. Aroclor-1242	GG.
B. beta-BHC	J. 4,4'-DDE	R. Endrin aldehyde	Z. Arocior-1248	нн.
C. delta-BHC	K. Endrin	S. alpha-Chlordane	AA, Aroclor-1254	II.
D. gamma-BHC	L. Endosulfan li	T. gamma-Chlordane	BB. Aroclor-1260	JJ.
E. Heptachior	M. 4,4'-DDD	U. Toxaphene	CC. DB 608	KK.
F. Aldrin	N. Endosulfan sulfate	V. Aroclor-1016	DD. DB 1701	LL.
G. Heptachlor epoxide	O. 4,4'-DDT	W. Aroclor-1221	EE.	мм.
H. Endosulfan I	P. Methoxychlor	X. Aroelor-1232	FF.	NN.

Notes:		
	 	
	 	·····

LDC #: 15715A3 SDG #: 11287

VALIDATION FINDINGS CHECKLIST

Page: / of 2 Reviewer: // 2 2nd Reviewer: _____

OL 603.2

Method: Pesticides/PCBs (EPA CLP SOW OLM03.1)

Validation Area	Yes	No	NA	Findings/Comments
. Technical holding times				i manga/comments
All technical holding times were met.				
Cooler temperature criteria was met.	1			
IL GC/ECD Instrument performance check	,			
Was a Resolution Check Mixture analyzed at the proper frequency?				
Was the resolution between two adjacent peaks <u>></u> 60%?				
Were Performance Evaluation Mixtures (PEM) analyzed at the proper frequency?				
Were the retention times of all peaks in the PEMs within the RT windows?				
Was the %D for each compound in the PEM ≤ 25%?				
Were the individual endrin and 4,4'-DDT breakdowns ≤ 20%?				
Were the combined endrin and 4,4'-DDT breakdowns ≤ 30%?				
Was there 90% resolution between adjacent peaks in the PEM?				1
III. Initial calibration				
Was the initial calibration performed at the required frequency?				
Were all percent relative standard deviations (%RSD) \leq 20% Individual Mix A and Individual Mix B except alaph-BHC and delta-BHC \leq 25%?				
Were single and multi-component standards calibrated at the proper concentrations?			:	
Were the retention time windows established properly for all single component analytes?				
Were multi-component target compounds calibration properly (RTs and CFs for proper number of peaks)?				
Was the resolution \geq 90% between adjacent peaks in the mid-point individual Mix A and individual Mix B standards?				
IV. Continuing calibration				
Were Individual Mix A, Individual Mix B and multicomponent standards analyzed at the proper frequency?				
Was the (%D) for each compound in the Individual Mix A and Individual Mix B standards < 25%?	•			
Were the retention times (RTs) of all peaks in Individual Mix A, Individual Mix B and multicomponent standards within the RT windows?				
Were the standards analyzed at the proper concentrations?	V			
Was the resolution \geq 90% between adjacent peaks in the mid-point Individual Mix A and Individual Mix B standards?	1	-		
V. Bianks				
Was a method blank associated with every sample in this SDG?		\bot		

LDC #: 15715A3 SDG #: 11287

VALIDATION FINDINGS CHECKLIST

Page: of 2 Reviewer: 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
Was a GPC calibration performed when a clean-up was performed? If no GPC calibration was performed, this is a protocol violation. Refer to the overall assessment worksheet for possible matrix interference findings.		/		· maniga/commission
Was a GPC calibration and clean-up performed for the water samples? (Not required)		/		
Were the GPC calibration check percent recoveries (%R) within the 80-110% QC limits?		1		,
Did the Aroclor 1260 standard match the apporpiate standard patterns?				
XII. Target compound identification				
Were the retention times of reported detects within the RT windows?			•	
Were non-detected compounds reported properly?				
Did the relative height ratios of detected multi-component target compounds match those in the standard?				
Was a GC/MS analysis performed for extract concentrations over 10ng/uL?	<u> </u>		•	
XIII Compound quantitation/CRQLs				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions, dry weight factors, and clean-up activities applicable to level IV validation?		-		
XIV. System performence				
System performance was found to be acceptable.		•		· · · · · · · · · · · · · · · · · · ·
XV: Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XVI. Field duplicates				
Field duplicate pairs were identified in this SDG.			.	<u> </u>
Target compounds were detected in the field duplicates.			7	
XVI. Field blanks				
Field blanks were identified in this SDG.			}	
Target compounds were detected in the field blanks.				

LDC	#:_	15	1	15	<u></u> 43
SDG	#:		11 2	8-	7

VALIDATION FINDINGS WORKSHEET <u>Surrogate Spikes</u>

	Page:_	<u>/</u> _of_	1
	Reviewer:		,
2nd	Reviewer:	و	_
			1

METHOD: GC Pesticides/PCBs (EPA CLP SOW OLIGO 4.2)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as N/A.

YN N/A

Were surrogates spiked into all samples, standards and blanks?

Were all TCX and DCB surrogate recoveries within advisory QC limits of 30-150% on each column.

Level IV/D ONLY

| Value | Val

YN	Were surrogate retention times (RTs) on each column within the established RT windows for all samples, standards and blanks?							
				Surrogate %R (Limits 30-150%)			·	
#	Date	Lab ID/Reference	Column	TCX	DCB	Associated Samples	Qualifications	
			RTX CUP 1		158 (30-	150)	1/P dat	
			RIX OUP 2		156 (30	(081)	'	
							1	
						•		
					<u> </u>			
 	<u> </u>			·				
ļ								
	ļ							
<u> </u>	<u> </u>				<u> </u>			
	 							
-	 				<u> </u>			
-	 					· · ·		
-	 				 			
 	 	· · · · · · · · · · · · · · · · · · ·		ļ	ļ			
	<u> </u>			1	<u> </u>			

TCX = Tetrachloro-m-xylene	Comments:	
DCB = Decachlorobiphenyl	<u></u>	
,,		

LDC#: /57/SA 3 SDG#: //287

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	of	_
Reviewer:	F	
2nd Reviewer:	10	

0LR03.2

		./		
METHOD:	GC_	<u> </u>	HPLC	

The calibration Factor (CF), average CF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

CF = A/C

average CF = sum of the CF/number of standards

%RSD = 100 * (S/X)

A = Area of compound,

C = Concentration of compound,

S = Standard deviation of the CF

X = Mean of the CFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	CF /0.2 (0-07std)	CF 10.72 (0.07sfd)	Average CF (initial)	Average CF (initial)	%RSD	%RSD
1	ICAL	10/16/06	endosulfan 1	412750	412150	412325	412325	4.4	8.4
		RTK OLPI	methoxy chlor	157690	157690	159677	159677	13.7	13.7
			9						
2				452 400	452400	451800	451800	11.1	11.)
		CLPZ	J	147 290	141290	+25156	149689	17.2	17.2
				<u> </u>		149689			
3		10/26/06		355590	355550	360108	360108	11.1	1(+)
		cup!		130825	130825	134893	134893	14.9	14.9
4				733000	777000	337721	337721	6.7	6.7
		cipr	V	114255	114205	116718	116778	13.)	13.1

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of th	e recalculated
results.	
	
	

LDC #:_	15715	`A3
SDG #:	1128	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

	Page:_	<u></u> of	_
	Reviewer:	77	
2nd	Reviewer:	و	

OLA03.2

METHOD: GC	HPLC
	111

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF - CF)/ave. CF CF = A/C

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	Average CF(Ical)/ CCV Conc.	CF/Conc. CCV	CF/Conc. CCV	%D	%D
1	cer	10/27/06	endosulpan PTX CIP !	0.020	0.020	0.020	9	0
		, and the second	methoxychier }	0.200	0.204	0204	2.0	2.0
			PAKCAPZ	0.020	0.02	0.02	5.0	5.0
2			1	0.200	0.205	0.205	2-5	2.5
-								
3		<u> </u>						
4								

Comments:	Refer to Continuing Cali	bration findings worksheet f	or list of qualifications and	l associated samples wi	nen reported results do not a	gree within 10.0% of the
recalculated	results.					<u> </u>

	" 					

LDC #: 1571543 SDG #: 11287

VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

Page:_	/_of_/
Reviewer:	7
2nd reviewer:	
	<i></i>

METHOD: GC Pesticides/PCBs (EPA CLP SOW OLDO 4.2)

The percent recoveries (%R)	of surrogates were re	calculated for the compounds	identified below using the	following calculation:
-----------------------------	-----------------------	------------------------------	----------------------------	------------------------

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

	Sample	ID:	#	<u> </u>
--	--------	-----	---	----------

Surrogate			Percent Recovery	Percent Recovery	Percent Difference	
				Reported	Recalculated	
Tetrachloro-m-xylene			- nearny			
Tetrachloro-m-xylene	RUP PEST!	0.02	H3.7 0.028	745 144	144	0
Decachlorobiphenyl	J.	1	0.031656	158	158	D
Decachlorobiphenyl						

Sample ID: #

Surrogate	Column ·	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachloro-m-xylene	RTXCLPII	0.02	0.029340	147	147	O
Decachlorobiphenyl	1	J	0.089377	156	156	0
Decachlorobiphenyl						

Sample ID:_

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachioro-m-xylene						
Tetrachioro-m-xylene				·		
Decachlorobiphenyl						
Decachlorobiphenyl						

Sample ID:

Surrogate	Column	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
Tetrachloro-m-xylene						
Tetrachioro-m-xylene			·			
Decachlorobiphenyl						
Decachlorobiphenyl						

Notes:			
	•		
		 	·
•		•	

LDC #: 15715A3 SDG #: 11287

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicate Results Verification

Page:_	<u>/</u> of_/
Reviewer:_	F
2nd Reviewer:	æ

METHOD: GC Pesticides/PCBs (EPA CLP SOW OLM04.2)

The percent recoveries (%R) and Relative Percent difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100* (SSC-SC)/SA

Where: SSC = Spiked sample concentration

SC = Concentration

SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboratory control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

POMLES LCS/LCSD samples:___

		pike	Sample		d Sample	L	cs	LC	:SD	LCS	/LCSD
Compound		dded	Concentration		entration なし)	Percent	Recovery	Percent	Recovery	F	RPD
	LCS	LCSD		LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
Gamma-BHC	0.10	0.10	o	0.058	0.06	58	58	41	61	not report	5
Heptachlor	J	1		0.064	0.065	64	64	65	65		$\boldsymbol{\mathcal{V}}$
Aldrin Dieldrin	0.20	0.20		0.13	0.13	65	65	65	65		O
Diektrin 4, 4'- 208	0.20	1		0.12	0.12	60	60	60	60		0
Endrin Endrin	0.20			0.15	0.14	75	75	70	70		7
4,4'-DDT											
							1				

Comments: R	lefer to Laboratory	Control Sample/Labora	atory Control Sample [Duplicate findings	worksheet for list	of qualifications an	d associated same	oles when reported
<u>results do not</u>	agree within 10.09	% of the recalculated r	esults.					
								

LDC #:	15715A3
SDG #:	11287

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	_/ of
Reviewer:_	77
2nd reviewer:	9-
	\mathcal{T}

3

METHOD: GC Pesticides/PCBs (EPA CLP SOW OLM04.2)

Υ	N	NIA
Y	N,	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Conce	ntratio	$n = \frac{(A_{\cdot})(V_{\cdot})(DF)(GPC)}{(CF)(V_{\cdot})(V_{\cdot})(S)}$	Example:
A _x	=	Area or height of the peak for the compound to be measured	Sample I.D:
CF	=	Calibration factor for the mid point concentration	
V _°	=	Volume of or weight of sample extracted in milliliters (ml) or grams (G)	Conc. = (
V,	==	Volume of extract injected in microliters (ut)	
V,	· =	Volume of the concentrated extract in microliters (uf)	= au NP
DF	=	Dllution factor.	
%S	=	Percent solids, applicable to soils and solids matrices only. (For water, %S=1)	
GPC	*	2 (for soils), 1 (for waters)	
Note	:	For multi-peak compounds such as Aroclors or Toxaphene, 3 to 5 major peaks were used for quantitation.	·

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification
	·				

Note:	 	 	 	 	 	